Dr. Dhrub Kumar Singh (Department Of Mathematics) ,School of Science YBN University , Ranchi

TEACHING MATERIAL ON

MATHEMATICS SCHOOL OF SCIENCE Dr. Dhrub Kumar Singh (Department Of Mathematics) ,School of Science YBN University , Ranchi

1) Use two-phase simplese method to solve the following LP problem.

Minimize z = 21 + 22Subject to $221 + 22 \ge 4$ $21 + 72 \ge 7$ and $21, 22 \ge 0$

Solo:-+Standard form

Max (Z) = +2,-22

Subject to -22, -225-4

-21, - 7 x2 ≤ - }

and 21, 22 ≥0

After adding Sweplus variables

Max (2) = -21 -22+05, +052

Subject to -22,-22+5, =-4

- 21 - 722+S2=-7

and 21, 22 ≥0

Solog - After Adding Surplus variables

Max(z) = -x, -x2

subject to 22,+22-5,+ A=4

2,+7x2-82+A2=7

and 21, 82, 51, 52, A1, A2 > 0

Max 2^{*} = +02, +02 +05, +05, +06 +07

Subject to 22, +22 -51 +41 = 42 21 +22 -52 +42 = +22

and 21, 22, 51, 52, 41, 42 =0

		ح	0	0	0	0	-1	-1	0
co-effu of Basic variables	Pasis Pasis	soln value	æ	× 2,	٦,	S _உ	A,	Az	Mit ratio
-1	A ₁ _	4	2	1	-1	0	01/1	0	4
-1	A ₂	7	C	7	0	-17	0	1	1 -
Ž=,-11		2;	- 3	-8	1	1	-1	-1	
		cj-2j	3	8	-1	-1	0	0	case node
			5	1			4		

 R_2 (Hew) $\rightarrow \frac{1}{7}$ R_2 (Old) R_1 (Hew) $\rightarrow R_1$ (Old) $- R_2$ (Hew)

)			ci	0	0	0	0	-1	ļ -
	co-eff of Basic variables	Variables in Back	Value Value	æ,	x^{7}	Sı	Se	A	Mim
	1	Α,	3	134	0	-1	/ 1 _	1	21/3 ->
	0	\mathcal{X}_{2}	1	1/4	1	6	- 1/7	. 0	7
) •	z*=-3	}	zj.	-13/6	1 0	.7	-1/4	1	
)			cj-zj	13/4	0	-1	4	0	
				1					

 R_1 (Hew) $\rightarrow \frac{7}{13}$ R_1 (old) 218 R_2 (Hew) $\rightarrow R_2$ (old) $-\frac{1}{4}$ R_1 (Hew)

		ci	0	0	0	0	
co-effy of Basic Variables		Sol ⁿ Values	æ	St 2_	S,	So_	Mist Vatio
0.	%,	21/3	1	0	- 7/3	1/3	1199
0	2 2_	13	0	1	13	- 4 ₁₃	10
Ž=0	(1)	25	0	0	0	0	1-
		CZ.	0	0	0	0	- ,

Phase-II

4.1

		e;	-1	-1	O	0	•
co-effh of isasic variables	Vanially in Basis	Sol" Values	2,	×2_	S,	ડ _ે	MIM.
6-1	22,	21/13	1	٥	-1/13	1/13	
5-1	\mathcal{X}_{2}	10	0	1	1/3	-13 -5	,
Z=-	31	Zj	-1	-1	6/13	1/13	
	13	cj- 2	<u>-</u> 0	0	-6/13	-1/13	

Hence, & = 21, 22 = 20 10 13 and the pptimum sol 2* = -31 Ans Standardofform

D Reduce the following Lpp into standard form:

Min 2 = 2, +222+323 swiject to 22, +3x2+3x= -4 32, +522+223 == and se, se ≥0, se & is unrestroicted

Solz: -> standard Form

Max 2 = -2, -222-323 Subject to -2x, -3x2-3(23-23). +8,=4 32, +5 x2 +2 (x3-x3)+52=7

and x1, x2, x3, x1, S1, S2 ≥0

Reduce in Standard Minimize 2 = 2x1+22+4x2 Busject to -2x, + 4x2 < 4 2,+222+23=5 22,+323 =2

and 21, 22 ≥0 and 23 is unrestricted insign. 80100- Standard form

Max Z*= -22,-22-423 S. + -22, +422 +8, =4 $x_1 + 2x_2 + (x_3 - x_3) - s_2 = 5$ 22, +3(23-23)+53=2 and 21, 22, 23, 26, 51, 52, 53 > 0 Ans (3) Min (2) = $2x_1 + x_2 + 4x_3$ $8.+ -2x_1 + 4x_2 \le -4$ $x_1 + 2x_2 + x_3 \ge 3$ $2x_1 + 3x_2 + 4x_3 \le 2$ $x_1, x_2 \ge 0$ and x_3 is unrestricted insign Solno - 3 decodered form $Max(z) = -2x_1 - x_2 - 4x_3$ $8.+ 2x_1 - 4x_2 - 6x_1 = 4$ $x_1 + 2x_2 + (x_3 - x_3) - 8x_2 = 3$ $2x_1 + 3x_2 + 4(x_3 - x_3) + 8x_3 = 2$ and $x_1, x_2, x_3, x_3, x_3, x_1, x_2, x_3 \ge 0$ Ans